3.1485 \(\int \sec ^2(c+d x) (a+b \sin (c+d x)) \tan ^3(c+d x) \, dx\)

Optimal. Leaf size=74 \[ \frac{a \tan ^4(c+d x)}{4 d}+\frac{3 b \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b \tan ^3(c+d x) \sec (c+d x)}{4 d}-\frac{3 b \tan (c+d x) \sec (c+d x)}{8 d} \]

[Out]

(3*b*ArcTanh[Sin[c + d*x]])/(8*d) - (3*b*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (b*Sec[c + d*x]*Tan[c + d*x]^3)/(4
*d) + (a*Tan[c + d*x]^4)/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.132936, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {2834, 2607, 30, 2611, 3770} \[ \frac{a \tan ^4(c+d x)}{4 d}+\frac{3 b \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b \tan ^3(c+d x) \sec (c+d x)}{4 d}-\frac{3 b \tan (c+d x) \sec (c+d x)}{8 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + b*Sin[c + d*x])*Tan[c + d*x]^3,x]

[Out]

(3*b*ArcTanh[Sin[c + d*x]])/(8*d) - (3*b*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (b*Sec[c + d*x]*Tan[c + d*x]^3)/(4
*d) + (a*Tan[c + d*x]^4)/(4*d)

Rule 2834

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]),
 x_Symbol] :> Dist[a, Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[Cos[e + f*x]^p*(d*Sin[e +
f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[n] && ((LtQ[p, 0]
&& NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1])

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec ^2(c+d x) (a+b \sin (c+d x)) \tan ^3(c+d x) \, dx &=a \int \sec ^2(c+d x) \tan ^3(c+d x) \, dx+b \int \sec (c+d x) \tan ^4(c+d x) \, dx\\ &=\frac{b \sec (c+d x) \tan ^3(c+d x)}{4 d}-\frac{1}{4} (3 b) \int \sec (c+d x) \tan ^2(c+d x) \, dx+\frac{a \operatorname{Subst}\left (\int x^3 \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{3 b \sec (c+d x) \tan (c+d x)}{8 d}+\frac{b \sec (c+d x) \tan ^3(c+d x)}{4 d}+\frac{a \tan ^4(c+d x)}{4 d}+\frac{1}{8} (3 b) \int \sec (c+d x) \, dx\\ &=\frac{3 b \tanh ^{-1}(\sin (c+d x))}{8 d}-\frac{3 b \sec (c+d x) \tan (c+d x)}{8 d}+\frac{b \sec (c+d x) \tan ^3(c+d x)}{4 d}+\frac{a \tan ^4(c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.266137, size = 84, normalized size = 1.14 \[ \frac{a \tan ^4(c+d x)}{4 d}+\frac{b \tan ^3(c+d x) \sec (c+d x)}{d}-\frac{b \left (6 \tan (c+d x) \sec ^3(c+d x)-3 \left (\tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x)\right )\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sin[c + d*x])*Tan[c + d*x]^3,x]

[Out]

(b*Sec[c + d*x]*Tan[c + d*x]^3)/d + (a*Tan[c + d*x]^4)/(4*d) - (b*(6*Sec[c + d*x]^3*Tan[c + d*x] - 3*(ArcTanh[
Sin[c + d*x]] + Sec[c + d*x]*Tan[c + d*x])))/(8*d)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 114, normalized size = 1.5 \begin{align*}{\frac{a \left ( \sin \left ( dx+c \right ) \right ) ^{4}}{4\,d \left ( \cos \left ( dx+c \right ) \right ) ^{4}}}+{\frac{b \left ( \sin \left ( dx+c \right ) \right ) ^{5}}{4\,d \left ( \cos \left ( dx+c \right ) \right ) ^{4}}}-{\frac{b \left ( \sin \left ( dx+c \right ) \right ) ^{5}}{8\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2}}}-{\frac{b \left ( \sin \left ( dx+c \right ) \right ) ^{3}}{8\,d}}-{\frac{3\,b\sin \left ( dx+c \right ) }{8\,d}}+{\frac{3\,b\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*sin(d*x+c)^3*(a+b*sin(d*x+c)),x)

[Out]

1/4/d*a*sin(d*x+c)^4/cos(d*x+c)^4+1/4/d*b*sin(d*x+c)^5/cos(d*x+c)^4-1/8/d*b*sin(d*x+c)^5/cos(d*x+c)^2-1/8*b*si
n(d*x+c)^3/d-3/8*b*sin(d*x+c)/d+3/8/d*b*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.977327, size = 120, normalized size = 1.62 \begin{align*} \frac{3 \, b \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, b \log \left (\sin \left (d x + c\right ) - 1\right ) + \frac{2 \,{\left (5 \, b \sin \left (d x + c\right )^{3} + 4 \, a \sin \left (d x + c\right )^{2} - 3 \, b \sin \left (d x + c\right ) - 2 \, a\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1}}{16 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/16*(3*b*log(sin(d*x + c) + 1) - 3*b*log(sin(d*x + c) - 1) + 2*(5*b*sin(d*x + c)^3 + 4*a*sin(d*x + c)^2 - 3*b
*sin(d*x + c) - 2*a)/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1))/d

________________________________________________________________________________________

Fricas [A]  time = 1.98, size = 247, normalized size = 3.34 \begin{align*} \frac{3 \, b \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, b \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 8 \, a \cos \left (d x + c\right )^{2} - 2 \,{\left (5 \, b \cos \left (d x + c\right )^{2} - 2 \, b\right )} \sin \left (d x + c\right ) + 4 \, a}{16 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16*(3*b*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*b*cos(d*x + c)^4*log(-sin(d*x + c) + 1) - 8*a*cos(d*x + c)^
2 - 2*(5*b*cos(d*x + c)^2 - 2*b)*sin(d*x + c) + 4*a)/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**3*(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.22193, size = 109, normalized size = 1.47 \begin{align*} \frac{3 \, b \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) - 3 \, b \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (5 \, b \sin \left (d x + c\right )^{3} + 4 \, a \sin \left (d x + c\right )^{2} - 3 \, b \sin \left (d x + c\right ) - 2 \, a\right )}}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{16 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/16*(3*b*log(abs(sin(d*x + c) + 1)) - 3*b*log(abs(sin(d*x + c) - 1)) + 2*(5*b*sin(d*x + c)^3 + 4*a*sin(d*x +
c)^2 - 3*b*sin(d*x + c) - 2*a)/(sin(d*x + c)^2 - 1)^2)/d